Class 1E Software Verification and Validation:
Past, Present, and Futurel

Warren L. Persons and J. Dennis Lawrence
Lawrence Livermore National Laboratory
Fission Energy and Systems Safety Program
Computer Safety & Reliability Group

This paper? discusses work in progress that addresses software
verification and validation (V&V) as it takes place during the full
software life cycle of safety-critical software. The paper begins
with a brief overview of the task description and discussion of the
historical evolution of software V&V. A new perspective is
presented which shows the entire verification and validation
process from the viewpoints of a software developer, product
assurance engineer, independent V&V auditor, and government
regulator. An account of the experience of the field test of the
Verification Audit Plan and Report generated from the V&V
Guidelines is presented along with sample checklists and lessons
learned from the verification audit experience. Then, an approach
to automating the V&V Guidelines is introduced. The paper
concludes with a glossary and bibliography.

1 INTRODUCTION
1.1. Task Description

The work in progress described in this paper builds upon previous work performed by the United
States Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research (RES)
and the Office of Nuclear Reactor Regulation (NRR) in the areas of verification and validation
(V&V) guidelines for the evaluation of safety-critical software. The purpose of this effort is to
field test the audit process and principles put forth in these guidelines. The major thrusts of this
effort involve reviewing the V&V Guidelines, applying the guidelines to a verification and
validation audit of Class 1E software, performing a cost/benefit analysis of computerizing the
audit guidelines on a laptop computer to serve as an aid for reviewers, meeting with the NRC
and guideline developers to discuss proposed madifications, and reporting on the work
performed.

1 This work was supported by the United States Nuclear Regulatory Commission under a Memorandum of
Understanding with the U.S. Department of Energy, and performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

2 The authors appreciate the guidance provided by the many discussions with Mr. Leo Beltracchi; Nuclear Regulatory
Commission, Office of Nuclear Regulatory Research, that led to concepts presented in this paper.

1.2. What is Class 1E Software?

IEEE Standard 379, Application of the Single Failure Criterion to Nuclear Power Generating
Station Class 1E Systems (1977), defines Class 1E as, “The safety classification of the electric
equipment and systems that are essential to emergency reactor shutdown, containment
isolation, reactor core cooling, and containment and reactor heat removal, or are otherwise
essential in preventing significant release of radioactive material to the environment.” In this
paper, software used in Class 1E systems is referred to as Class 1E software. Class 1E
software is currently being used in nuclear power plants and applications including (but not
limited to) reactor trip systems and emergency generator load sequencers.

1.3. What is Software Verification and Validation?

The terms “verification,” “validation,” and “verification and validation” abound in the software
literature and are used with various explicit or implicit meanings. Some of the diversification may
be rooted in a particular author’'s need to customize the terminology so that it is appropriate for a
specialized application area. Another reason may be the type or criticality of the software
application; e.g., software applications range from a simple spreadsheet used to track hours an
individual works on a project, to highly reliable flight control software used for the space shuttle.
Intuitively, there is a difference in what V&V should mean in each case and in the amount of
effort that should be applied to V&V activities for these extreme application types.

There is some consensus among software engineers that the activities of verification and
validation are focused on the determination of whether the software performs its intended
function and has the required quality attributes. This body believes that V&V as a formal
discipline is near the midpoint of its development. As such, specific formal boundaries have yet
to be established to define what the extent of the V&V functional activities should be. However,
a large body of opinion agrees that V&V is one of the techniques used to help identify, assess,
and manage risks in software development projects and can be carried out at varying levels of
rigor, depending on the nature of the application and the risks involved in the development
activity. The utmost rigor is required when one of the risks is safety.

The terms verification, validation, or verification and validation are used in this paper in
accordance with the following IEEE Standard 610.12-1990 definitions:

Verification. The process of evaluating a system or component to determine whether the
products of a given development phase satisfy the conditions imposed at the start of the
phase.

Validation. The process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified requirements.

Verification and validation. The process of determining whether the requirements for a system
or component are complete and correct, the products of each development phase fulfill the
requirements or conditions imposed by the previous phase, and the final system or
component complies with specified requirements.

1.4. What is the Problem?

Nuclear reactors, like any complex industrial plants, routinely experience equipment or
operational failures, some of which could lead to serious consequences. Unlike many industrial
plants, one potential consequence of reactor accidents is the release of radiation or radioactive
material into the environment. Until the mid 1970s, software was not used in Class 1E systems,
but a rapid transition into an era of computer and software control of these Class 1E systems is
now occurring.

Many risks exist in the complex process of producing high-quality Class 1E software. Most
software projects should be concerned with the risks of failing to meet cost and schedule goals.
In some cases, there are additional technological risks due to the use of new hardware, new
programming languages, new design techniques, or new software tools. When safety is at
issue, special attention must be paid to all of the above risks as well as to the special risks to
human life and health, property, and the environment. Software developers must build safe and
reliable software products that satisfy the requirements allocated to the software portion of the
Class 1E system. In particular, unless the set of software development activities is carefully
managed, the complexities and uncertainties inherent in these procedures can cause
unnecessary risk, delays, and expenses.

An aspect of the problem is that building any system or any software system is effectively a
problem-solving exercise. As such, all of the difficulties associated with problem solving are
encountered during the software development activity. In particular, there are limitations in the
software engineer’'s communication skill, ability, experience, problem understanding, flexibility to
view the problem from multiple perspectives — that is, the ability to shift paradigms — as well
as normal technical difficulties associated with any problem-solving endeavor. Other
components of the problem are specific to software development. First, software development is
a labor-intensive, intellectual activity. A noted software expert, Edgar Dijkstra, stated in 1969
that software development is one of the most intellectually challenging activities in which
humans can engage. Second, software does not wear out and hence, does not fail in the same
manner that hardware does. Software can contain manufacturing or design defects which can
produce hazards and failures in operational use. It is quite common for software errors to be
very subtle and to be completely overlooked during implementation, but their presence can
cause catastrophic failure after years of apparently successful operation.

1.5. What Makes Class 1E Software Different?

Considering the extensive use of computers and software during the last 20 years in various
applications, why is there concern over the application of this technology to Class 1E systems?
Simply stated, the following Class 1E software attributes raise the level of concern and make it
different:

* Potential risk to life, property and environment,
» Safety requirements, and
* High reliability requirements.

There are two central concepts that are key to the development of Class 1E software. First,
software safety and reliability considerations cannot be fully understood in isolation from
computer hardware and application considerations. Second, the process of engineering
reliability and safety into a computer system requires activities to be carried out throughout the
software life cycle. Thus, the development, use, and regulation of computer systems in nuclear
reactors is a complex issue.

1.6. General Approaches to Increase Confidence in Class 1E Software

There are two general approaches for increasing the confidence of Class 1E software systems,
as shown in Figure 1: (1) reducing, if not eliminating, the number of errors introduced during the
software development process, and (2) increasing the percentage of overall errors found prior to
system installation. Note that Figure 1 shows only one sample translation that occurs during the
software development process. In this case, a translation is shown from the requirements,
allocated by the Class 1E system to the Class 1E software, to the software design. Similarly,
there are translations from design to code, from code to integrated components, and so forth
throughout the software development process. Each translation provides opportunities to insert
or inject errors and to detect inserted errors. The goal is to insert fewer errors and
simultaneously detect more errors as each translation occurs during the software development
process. The goal is “error free software;” the focus is on continual process improvement and
eliminating errors before they are propagated. For Class 1E software, both methods are
appropriate.

Increase detection of errors

Design

Requirements Design Process

(Reduce introduction of errors>

Figure 1. Reduction of Errors Versus Detection of Errors

1.7. Issues Associated with Class 1E Software

If a comparison is made between current electro-mechanical Class 1E systems and software-
based Class 1E systems, several issues related to the use of software in these systems can be
identified:

* Lack of experience in developing Class 1E software.

Inability to measure required, ultra-high software reliability.
» Lack of a mathematical basis for safety-critical software construction.

Difficulty in formally proving software correctness.
* New potential for common-mode failures.

 Lack of operational data.

« Small errors may have significant consequences.

In spite of this, software-based systems may be the only reasonable alternative for replacing
aging nuclear reactor protection system components. Traditional analog/relay equipment is
becoming much more expensive and, in some cases, is totally unavailable. If substitute
equipment is available, it often contains embedded digital hardware and software which share
the issues just listed. A large body of opinion, however, believes that with proper use of modern
software engineering practices, the number of residual defects in delivered Class 1E software
can be reduced to an acceptable minimum, and these remaining defects will not have severe
consequences.

Many risks are involved in the development of Class 1E software for use in nuclear power
generating stations. For example:

» Delaying an audit or evaluation until the end of the development effort can be very expensive.
Extensive industry experience shows that errors are more easily fixed and less expensive to
fix if they are found in early development phases.

» Delaying evaluations until after the development effort is complete may require more
extensive proof that the safety requirements have been met, and it may actually be impossible
at this point to assess the safety of the system.

* Inconsistencies among auditors, or by a single auditor over a period of time, can lead to
unsettling differences in evaluation results and required corrective actions.

» Evaluations are inherently labor-intensive procedures. Lack of computer assistance increases
the time and effort involved in performing these evaluations, which results in increased costs
to both the developer and the regulatory agency.

» A possible result of these uncertainties and increased costs can be less-reliable software,
which in turn can increase the difficulty of assessing the safety of the reactor.

2. THE EVOLUTION OF V&V

In the early history of computing, software was produced without a clear written document
describing, beforehand, what the software was supposed to do. In some cases the results of a

particular software task surprised even those who were responsible for the detailed
implementation. Many “features” were discovered as testing and use proceeded. A lack of
discipline in the software development process wasted resources and caused considerable
customer dissatisfaction. It was discovered by some software vendors that the production of a
requirements specification prior to the writing of code led to a better product and reduced costs.
But surprises still occurred. Testing was made more formal and it became more meaningful
because there was a requirements specification against which to test. The requirements
specification also improved as ambiguous and untestable elements were removed from the
specifications. Still, the results tended to contain “features” which were undesirable and defects
which were discovered only during use.

Discipline in software development became more formalized and the notion of “design” was
introduced as a formal step in the software development life cycle. It was recognized by some
that software development is an “engineering” discipline and the term “software engineering”
was introduced. Quality control and quality assurance issues were addressed as reviews and
inspections slowly made their way into the software development life cycle. Configuration
management was introduced as software engineering matured.

The notion of a software life cycle became commonplace with activities such as: planning,
requirements, design, implementation, test, installation, operation and maintenance, and
retirement. The terms “verification” and “validation” (termed collectively V&V) were introduced
as part of the engineering discipline. Originally, V&V applied only to the technical products of the
software development process. The managerial and product assurance aspects of software
development were not originally subjected to V&V.

Both product assurance and configuration management can trace their historical roots to the
hardware side of the engineering discipline. On the other hand, V&V came into existence to
cope with software and its development. Gradually it was recognized that preventive testing was
a part of management’s tool kit for risk management and that testing should have a life cycle of
its own. Testing should be planned, analyzed, designed, implemented, executed, and the
results recorded. Moreover, each of these activities should be subject to inspections and
reviews, with the results of each activity placed under configuration control.

Software projects and products have evolved from small systems that were typically developed
by a few people to much larger, more complex systems involving up to several hundred people
on the software development team. This change in the characteristics of software projects and
products has caused a radical change in the notion of verification and validation. Originally, V&V
was very informal and individualized and was focused on testing. Early V&V merely involved the
programmer exercising the code that was produced. As the software systems were required to
perform more and more functions, and the resulting systems became larger and more complex,
the neglect of planning, design and execution of test procedures and test cases led to poor
guality and to defective, unreliable software products.

Some companies have discovered that, when risks are high, V&V should apply to all aspects of
software development. Companies which produce software for safety-critical applications are
beginning to use a much more formal V&V process. This notion of V&V extends beyond the
traditional restriction to technical aspects of software development in order to include

management and product assurance. This can only be done by an organization which is
independent of the developer. Independent V&V (IV&V) is performed on all software products
which are part of the software engineering and product assurance activities. In particular, this
independent analysis must give considerable attention to identifying, assessing, and managing
risks and hazards.

The overall goal of IV&V is to ensure that software quality is achieved. Part of this goal is
achieved by providing specific visibility into the entire development process so that management
decisions can be made to assure appropriate software quality. IV&V continues to evolve as
software development projects change and has become a very powerful management tool.

3. A PERSPECTIVE ON V&V

3.1. Software Evaluation Perspectives

Any software evaluation process can be discussed from several different viewpoints. The
viewpoint that is presumed has a considerable effect on the topics discussed, and particularly
the emphasis placed on different aspects of the evaluation process. In this discussion, three
viewpoints are considered: the regulatory view, the independent verification and validation view,
and the software development view. Each viewpoint, as shown in Figure 2, has its own goals,
evaluation perspective and activities, which are described below.

Regulator

Assessment, audit, evaluation

V&V

Inspection, analysis, formal review
Independent testing

Product
Developer Assurance
Walkthrough, peer review, testing SQA, SCM, V&V and Safety
Requirements...Design...Code...Test ' ’

Figure 2. Model for Software Evaluation

3.2. Developer’s Viewpoint

In this paper it is assumed that the developer of Class 1E software defines the methods to be
used to deliver that software in a project plan, which is subject to regulatory approval. Once
approved, the software developer is held accountable for development in accordance with the
project plan. This two-step sequence of project plan approval followed by project plan
accountability offers both flexibility on the part of the developer and insight on the part of the
regulatory agency. The separation of the development function into the equivalent of
requirements, design, implementation, integration, validation, installation, and operations and
maintenance activities is a fairly standard practice.

The software developer will carry out certain product assurance activities, as suggested in
Figure 2. In this paper, the term “product assurance” is used to cover the developer’s activities
which relate to V&V, testing, software quality assurance (SQA), software configuration
management (SCM), and safety analysis. The developer’s product assurance provides the first
objective evidence of the quality of the development effort.

3.3. IV&V Viewpoint

The ultimate result of the software development process, as considered here, is a suite of
computer programs and its related documentation. The documentation guides the user,
developer, installer, and maintainer of the software throughout the life cycle. These programs
must have characteristics such as safety, reliability, performance, usability and function. The
purpose of IV&V is to provide independent assurance that the required characteristics have
been met by the developer. The importance of IV&V is emphasized in various standards listed
in the bibliography at the end of this paper.

3.4. Regulator’s Viewpoint

Regulators are required by legislation to license nuclear power generation stations. One aspect
of this is to analyze the evaluations performed by the software developer (in the form of product
assurance activities) and the IV&V team activities. This may best be done using standards
(such as those found in the bibliography) to help evaluators perform assessments or audits in
an efficient cost-effective fashion. These audits or assessments should be consistent over time,
across companies, and across projects within companies.

4, THE VERIFICATION AUDIT FIELD TEST
4.1. Verification Audit Context

The first major activity on the field test was to review and apply the V&V Guidelines to the
development of an audit plan to be used to audit existing Class 1E software components. The
V&YV Guidelines were provided as NRC-furnished material. This audit was performed at a
vendor’s facility in January 1993 and was conducted by an interdisciplinary audit team
consisting of personnel from NRC/NRR, SoHaR Incorporated, and Lawrence Livermore
National Laboratory. The audit evaluated both the software development process used to

develop Class 1E software products that are components of Class 1E systems, and the
products of that process.

Figure 3 identifies checkpoints at which software audits of the software development activities,
processes, or products can be performed. The number of audits depends, among other things,
on the specific software life cycle used by the vendor or software developer. Each audit
analyzes the work done relative to that checkpoint. Many reliability, performance, and safety
problems can be resolved only by careful design of the software product, so they should be
addressed early in the software development process, no matter which life cycle is used. Any
errors or oversights can require difficult and expensive retrofits, so they too are best found as
early as possible. Consequently, an incremental V&V audit process is believed to be more
effective than a single audit or evaluation at the end of the development process. Using multiple
audits, problems can be detected early in the software life cycle and corrected before large
amounts of resources have been consumed.

Software Developer Activities

Life Cycle
Activities

. - . Operation &
Planning Requirements Design Implementation Integration Validation Installation Maintenance
Activities Activities Activities Activities Activities Activities Activities Activities
Software Requirements Design Code System Build Operations
Management Plan Specification Specification Listings Documents Manuals
Software Hardware & Installation
Development Plan Software Configuration
Architecture Tables
Software QA Interface Interface Design
Plan Specifications Specification = =
Integration Plan _5 _5 2 .5 2 E’ .5
Installation Plan 3 3 8 3 8 g 3
4 4 (7 14 14 12 @
Maintenance Plan § é § é § § mimg?sance §
< IS 154 I IS c <
Training Plan E = = E < E Training =
o)) o) S Manuals 9
Operations Plan 'S = c = = c c
o o o o o o o
Software © Requirements © Design Safety © Code Safety @ Integration B Validation O |nstallation © Change Safety
Safety Plan Safety Analysis Analysis Analysis Safety Safety Safety Analysis
Analysis Analysis Analysis
Software V&V V&V V&YV Design V&V V&YV Integration V&YV Validation V&YV Installation V&V Change
Plan Requirements Analysis Implementation Analysis & Test Analysis & Test Analysis & Test Report
Analysis Report Report Analysis & Test Report Report Report
Report
Software CM Plan CM CM Design CM CM Integration CM Validation CM Installation CM Change
Requirements Report Implementation Report Report Report Report
Report Report

Planning
Audit
Audit

Audit
Integration
Validation
Audit
Installation

%)
a
c
)
£
9]
=
=
=
o)
v

c
2
IS}
2
c
3]
£
)
o
E

Software Audits

Figure 3. Class 1E Software Life Cycle Activities

4.2. Verification Audit Process Description

The audit process proposed in the guidelines consists of four phases:
 Audit Preparation Phase,

» Audit Performance Phase,

» Audit Reporting Phase, and

* Audit Close-out Phase.

The majority of the effort is expended during the Audit Preparation Phase, which is performed
before the on-site visit. This phase consists of the definition of the audit purpose, identification of
the audit scope, and identification of the audit performance standards. During this phase,
interactions with the vendor occur to obtain required audit material and to tailor the audit plan to
the vendor’s software development process. This phase is complete with the selection and
orientation of the audit team. The next phase, the Audit Performance Phase, begins with the
entry briefing or opening meeting, and includes performing the audit using the audit procedures
and checklists prepared in the audit plan, the daily audit team meetings, and the daily briefings
to vendor management. The Audit Reporting Phase begins with the audit exit briefing or closing
meeting and concludes with the production of the Audit Report. It should be noted that the Audit
Report is the only product produced by the audit team as part of the audit process. As such, this
document is extremely important since it is the only evidence that the audit actually occurred.
The Audit Close-out Phase consists of interaction between the NRC and the vendor as findings
are reviewed and corrective actions are planned and analyzed.

4.3. Verification Audit Processes and Products Audited

As shown in Figure 3, the set of software development activities performed during the software
development process, in accordance with a particular vendor software life cycle, uses several
processes to produce software products. It should be noted that some of the processes are
totally contained within a specific set of software development activities, such as the process
that is used to produce the software V&V Plan. On the other hand, some processes span
several sets of software development activities. A case in point is the software configuration
management process, which spans all sets of software development activities. In all cases, the
processes used for software development produce interim software products that can each be
evaluated. The verification audit field test described in this paper looked at the following
software processes and products: software planning, software requirements, software safety
requirements, software safety analysis, software verification and validation, software
configuration management, software design, software implementation, software test, and
hardware and software integration activities.

4.4. Verification Audit Sample Checklists

Each of the processes and products shown in Figure 3 can and should be evaluated using a
checklist or set of questions developed for the audit plan using the guidance provided by the
V&V Guidelines. Portions of sample checklists used to evaluate software products are shown
below. These include partial samples of the following software products; hamely, a software
development plan, a software requirements specification, and a software code safety analysis.

More detailed information can be found in the field test verification audit plan. (See Persons

1993a.)

4.4.1. Sample Software Development Plan Checklist

The following is a sample of a verification audit checklist that can be used to audit a software
development plan for a Class 1E software project.

Software Development Plan Checklist

The Software Development Plan is the plan that guides the technical aspects of the
development project. It will specify the life cycle that will be used, and the various
technical activities that take place during that life cycle. All methods, tools and
techniques which are required in order to perform the technical activities will be
identified.

1 Life Cycle Process Questions.

a
b.

™ 0o a 0

«Q

Is a software life cycle defined?

Are the defined life cycle processes sufficient to provide confidence that a
safe and adequate product will be produced?

Are the inputs and outputs defined for each life cycle process?
Is the source of each life cycle process input specified?

Is the destination of each life cycle process output specified?
Does each life cycle phase require a safety analysis?

Does each life cycle phase include a requirement for an audit at the end of
the phase?

4.4.2. Sample Software Requirements Checklist

The following is a sample of a verification audit checklist that can be used to audit a software
requirements specification (SRS) for a Class 1E software project.

Software Requirements Specification (SRS) Checklist

The Software Requirements Specification (SRS) documents all the software
requirements. These come from the specific system or product design and the
specific system or product hazard analysis.

1. User Characteristics Questions.

a

Is each category of user identified in the SRS?

Is the expected experience level of each category of user defmed”

- (5D AN SeaFRment for each

6. Performance Requirements Questions.
a. Are all static performance requirements fully described?
b. Are all system timing requirements included in the SRS?
¢ Are the timing requirements specified numerically?
d

Are timing requirements expressed for each mode of operation?

4.4.3. Sample Code Safety Analysis Checklist

The following is a sample of a verification audit checklist that can be used to perform a code
safety analysis audit for a Class 1E software project.
Code Safety Analysis Checklist

The purpose of the safety analysis is to identify any errors or deficiencies in the code
which could contribute to a hazard.

1 Logic Questions.
a. Does the code logic correctly implement the safety-critical design criteria?
b. Are design equations and algorithms correctly implemented in the code?
c. Does the code correctly implement the error handling design?
d

Does the code correctly implement the off-normal and emergency operations
design?

e. Is there convincing evidence that no code considered to be non-critical can
adversely impact the function, timing, and reliability of the safety-critical
code?

f. Is there convincing evidence that any interrupts that may be included in the
code will not take precedence over or prevent the execution of safety-critical
code modules?

2. Data Questions.

a Are the definition and use of data items in the code consistent with the
software design?

b. Is each data item in the code explicitly typed?

¢ Is there a convincing argument that no safety-critical data item can have its
value changed in an unanticipated manner, or by an unanticipated module?

d. Isthere a convincing argument that no interrupt can destroy safety-critical
data items?

45. Verification Audit Report

The verification audit report is the only product of the audit team and serves as evidence that
the audit was performed. It encapsulates the audit scope, purpose, audit process used, and
associated information. Based on the V&V Guidelines, a sample audit report was generated and
used for the field test verification audit. More specific information can be found in the verification
audit report. (See Persons 1993b). A sample table of contents for a typical verification audit plan
is shown below:

Executive Summary

Introduction

Software Verification Audit Description
— Scope

— Purpose

Definitions and Acronyms
Identification of the Auditors

People Contacted

Software Verification Audit Summary
Software Verification Audit Results

— Findings

— Observations

— Concerns

Recommendations

Positive Indications

Software Verification Audit Procedure
References

Attachments

Audit Plan

Audit Schedule

Entrance Briefing Viewgraphs

Vendor Approach to Software Development
— Completed Checklists.

Most of the table of contents entries are self-explanatory; however, it should be noted that the
Software Verification Summary includes all the processes and products that were analyzed
during the audit. In addition, the Verification Audit Procedure section should describe the audit
procedures and checklists that were used to perform the verification audit.

4.6. Verification Audit Lessons Learned

Audits are of necessity conducted during a very limited time frame. The V&V Guidelines provide
guidance as to how to increase the effectiveness of audits for safety-critical software performed
within the limited time available. The purpose of V&V Guidelines, audit plans, audit procedures,
and audit checklists is to aid the audit team in the final evaluation of the risk associated with the
safety-critical software in question.

Focus on the software development process and its related products provides visibility into the
software planning, management, analysis, design, implementation, and testing phases and
greatly increases the understanding of the various software development and product
assurance processes. It provides a valuable framework for the auditors as they make their
determination as to whether the licensee/vendor complies with applicable standards for Class
1E software for nuclear power plants. The following are lessons learned which, when
incorporated into the V&V Guidelines, should yield a more powerful assessment tool for
verification audits that will serve both Class 1E software developers and NRC regulators alike.

A pre-audit visit should be performed to establish the scope and purpose of the audit.

» Review of the vendor’s software development process should be completed prior to
developing the verification audit plan.

» Review of available system and software development documentation should be completed in
advance of the on-site visit.

« Tailoring of the audit process to the vendor’s software development process should be
completed as part of the audit plan development.

» The auditee should be given advance notification of the materials to be reviewed by the audit
team.

» Several verification audits should occur to assess the software processes and products as
they are created. Start the audit process early in software development life cycle with a review
of the planning documentation.

» The audit team should include specialists in the specific processes and/or products under
evaluation. The composition of the audit team can and should change from one verification
audit to another.

» The audit process is labor-intensive and attention to detail is required.

» A two-level evaluation process is desirable. The first level screens the processes or products
to determine if further evaluation is appropriate.

» The audits need to be consistent across time and companies. Knowledge of past audits of the
same process or product is desirable and helpful in performing the current verification audit.

» Easy access to standards is helpful.

» Automated assistance for the audit team in the creation of daily activity summary and interim
documentation would make the audit process more efficient.

5 FUTURE VISION OF CLASS 1E EVALUATION

The evaluation of Class 1E software by the regulator should be consistent with the developer’s
life cycle. Many different life cycle models exist and are used by software development
companies, but they include the same basic activities. These models differ primarily in the
ordering of activities through time. As a result, the regulator can concentrate on evaluating the
activities as they occur during the developer’s life cycle. Because of this variation between life
cycle models, evaluation means must exist for each different activity in the life cycle. This
argument is the basis for the vision presented in this paper.

This vision of future Class 1E software evaluation suggests a change in perspective that
involves computer assistance for the evaluation process. Human Factors studies and task
analysis experiences suggest that there is a general pattern for automating any process. As
applied to the regulatory evaluation process, the following steps are useful:

» Control the complexity of the audit process.

» Define and separate the audit activities by software life cycle activity.

 Define activity-specific audit procedures.

» Develop support tools to encourage the use of consistent evaluation practices.
» Develop an integrated environment to assist in the audit process.

5.1. Automation Issues

To be successful in introducing automated support into auditing Class 1E software, an
integrated approach is suggested that includes the auditor, methods, tools, and data. Goals for
the support environment include increased accuracy; consistency and productivity; ability to
customize to specific evaluation needs; and acceptance by the auditors.

Automated support for audits or evaluations raises several issues that needed to be addressed.
* Increasing consistency among auditors.

» Reducing the time and effort required to perform an audit.

» Training team members in the use of the evaluation process and supporting tools.

» Determining the processes and products to be audited.

 Defining the audit process.

« Tailoring the evaluations to life cycles used by different companies.

» Maintaining consistency among tools.

» Providing a common user interface.

» Maintaining a data base of past audits.

» Maintaining a data base of important guidance and standards.

 Providing security and access control.

5.2. Automation Architecture

A conceptual architecture for an automated approach is shown in Figure 4. Suppose that an
audit is imminent. Through the graphical user interface the auditor selects the developer’s
activities to be evaluated. The automated support provides appropriate tools, standards, and
guidance for use in the specific audit and then guides the auditor through that process.

This conceptual architecture has two objectives. The first objective is to provide step-by-step
guidance to the evaluator in the use of the evaluation process. The second objective is to
provide automated support for preparing the auditor's documentation, including the audit plan,
supporting data, the audit report, and information that is to become part of the historical data
base. A cost/benefit analysis of such an automated approach is in progress.

Graphical User
Interface

:
R :

Planning Requirements Design Implementation Ol\r/)gﬁttgonn;nzégd
Activities Activities Activities Activities e Activities

Tool

. istorical
Repository Evaluatlon Agent ggstg)t:g?e

:

Standards and
Guidance
Database

Figure 4. Conceptual Architecture of the Evaluation Assistant

GLOSSARY

audit. An independent evaluation of software products or processes to ascertain compliance to
standards, guidelines, specifications, and procedures based on objective criteria that include
documents that specify:
(1) the form or content of the products to be produced
(2) the process by which the products shall be produced
(3) how compliance to standards or guidelines shall be measured. (IEEE Std. 610.12).

Class 1E software. The safety classification of the electric equipment and systems that are
essential to emergency reactor shutdown, containment isolation, reactor core cooling, and
containment and reactor heat removal, or are otherwise essential in preventing significant
release of radioactive material to the environment. Software used in Class 1E systems is
referred to as Class 1E software. (IEEE Standard 379).

Class 1E system. The safety classification of the electrical equipment and systems that are
essential to emergency reactor shutdown, containment isolation, reactor core cooling and
containment and reactor heat removal, or are otherwise essential in preventing significant
release of radioactive material to the environment. (IEEE Std. 379).

evaluation. Determination of fitness for use. (IEEE Std. 1074).

procedure. (1) A course of action to be taken to perform a given task. (2) A written description
of a course of action as in (1); for example, a documented test procedure.
(IEEE Std. 610.12-1990).

process. (1) A sequence of steps performed for a given purpose; for example, the software
development process (IEEE Std. 610.12). (2) A function that must be performed in the
software life cycle. A process is composed of activities. (IEEE Std. 1074).

product assurance. The software developer’s activities which relate to verification and
validation, testing, software quality assurance (SQA), software configuration management
(SCM), and safety analysis.

review. An evaluation of software element(s) or project status to ascertain discrepancies from
planned results and to recommend improvement. This evaluation follows a formal process
(for example, management review process, technical review process, software inspection
process, or walkthrough process). (IEEE Std. 1028).

safety. (1) Freedom from those conditions that can cause death, injury, occupational illness, or
damage to or loss of equipment or property, or damage to the environment (MIL-STD 882C).
(2) The expectation that a system does not, under defined conditions, lead to a state in
which human life, limb and health, economics or environment are endangered. Note: For
system safety, all causes of failures which lead to an unsafe state shall be included;
hardware failures, software failures, failures due to electrical interference, due to human
interaction and failures in the controlled object. Some of these types of failure, in particular
random hardware failures, may be quantified using such measures as the failure rate in the
dangerous mode of failure or the probability of the protection system failing to operate on

demand. The system safety also depends on many factors which cannot be quantified but
can only be considered qualitatively. (IEC 65A (Secretariat) 122).

safety-critical software. (1) Software whose inadvertent response to stimuli, failure to respond
when required, response out-of-sequence, or response in unplanned combination with
others can result in an accident. Also, software that is intended to mitigate, or recover from
the result of an accident (IEEE P1228 Draft E). (2) Software which ensures that a system
does not endanger human life, limb and health, or the economics of environment of the
capital equipment and control. (IEC 65A (Secretariat) 122).

software development process. (1) The process by which user needs are translated into a
software product. The process involves translating user needs into software requirements,
transforming the software requirements into design, implementing the design in code, testing
the code, and sometimes, installing and checking out he software for operational use. Note:
These activities may overlap or be performed iteratively (IEEE Std 610.12). (2) A set of
activities, methods, practices, and transformations that people use to develop and maintain
software and the associated products (e.g., project plans, design documents, code, test
cases, user manuals, etc.). (CMU/SEI-91-TR-24).

software life cycle (SLC). A project-specific, sequenced mapping of activities. (IEEE Std. 1074).

software reliability. The probability that software will not cause the failure of a system for a
specified time under specified conditions. The probability is a function of the inputs to and
use of the system as well as a function of the existence of faults in the software. The inputs
to the system determine whether existing faults, if any, are encountered. (IEEE Std. 982.1).

software product. (1) The complete set of computer programs, procedures, and possibly
associated documentation and data designated for delivery to a user. (2) Any of the
individual items in (1). (IEEE Std. 610.12).

task. The smallest unit of work subject to management accountability. A task is a well-defined
work assignment for one or more project members. Related tasks are usually grouped to
form activities. (IEEE Std. 1074).

validation. The process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified requirements. (IEEE Std.
610.12).

verification. The process of evaluating a system or component to determine whether the
products of a given development phase satisfy the conditions imposed at the start of that
phase. (IEEE Std. 610.12).

verification and validation. The process of determining whether the requirements for a system
or component are complete and correct, the products of each development phase fulfill the
requirements or conditions imposed by the previous phase, and the final system or
component complies with specified requirements. (IEEE Std. 610.12).

BIBLIOGRAPHY

Andriole, S. J., Editor, Software Validation, Verification, Testing and Documentation, Petrocelli
Books, 1986.

AFSC/AFSLC Pamphlet 800-5, Acquisition Management: Software Independent Verification and
Validation (IV&V), 1988.

ANS-10.4-1987, American National Standard for the Verification and Validation of Scientific and
Engineering Computer Programs for the Nuclear Industry.

American Society of Mechanical Engineers.
ASME NQA-1-1989, Quality Assurance Program Requirements for Nuclear Facilities.
ASME NQA-2-1989, Proposed Addition to ANSI/ASME-NQA-2, Part 2.7, Quality Assurance
Program Requirements for Nuclear Facility Applications, Draft 3.3.

CMU/SEI-91-TR-24, Capability Maturity Model for Software, Version 1.1, February 1993.

DO-178B, Requirements and Technical Concepts for Aviation, Draft Revision to Software
Consideration in Airborne Systems and Equipment Certification.

DOD-STD-2168, Military Standard, Defense System Software Quality Program, 29 April 1988.

Institute of Electrical and Electronic Engineers.

IEEE-ANS-7-4.3.2-1982, Application Criteria for Programmable Digital Computer Systems in
Safety Systems of Nuclear Power Generating Stations.

IEEE 379-1977, Application of the Single Failure Criterion to Nuclear Power Generating
Station Class 1E Systems.

IEEE 603-1991, Criteria for Safety Systems for Nuclear Power Generating Stations.
IEEE 610.12-1990, /IEEE Standard Glossary of Software Engineering Terminology .
IEEE 730-1989, IEEE Standard for Software Quality Assurance Plans.

IEEE 828-1990, /IEEE Standard for Software Configuration Management Plans.
IEEE 830-1984, IEEE Guide to Software Requirements Specifications.

IEEE 982.1-1988, IEEE Standard Dictionary of Measures to Produce Reliable Software.
IEEE 983-1986, IEEE Guide for Software Quality Assurance Planning.

IEEE 1012-1986, IEEE Standard for Software Verification and Validation Plans.
IEEE 1016-1987, IEEE Recommended Practice for Software Design Descriptions.
IEEE 1028-1988, IEEE Standard for Software Reviews and Audlits.

IEEE 1042-1987, IEEE Guide to Software Configuration Management.

IEEE 1058-1987, IEEE Standard for Software Project Management Plans.

IEEE 1074-1991, IEEE Standard for Developing Life Cycle Processes.

IEEE 1228 Draft (1993), IEEE Standard for Software Safety Plans, Draft J.

IEEE 1298-1992, IEEE Standard Software Quality Management System.

International Electrotechnical Commission.

IEC Standard Publication 880-1986, Software for Computers in the Safety Systems of
Nuclear Power Stations.

IEC 65A (Secretariat) 122 (1989), Software for Computers in the Application of Industrial
Safety-Related Systems, August 1, 1991.
International Organization for Standardization.

ISO 9000-1987, Quality Management and Quality Assurance Standards — Guidelines for
Selection and Use. This is also ANSI/ASQC Q90-1987, Quality Management and Quality
Assurance Standards — Guidelines for Selection and Use.

ISO 9000-3, Quality Management and Quality Assurance Standards — Part 3: Guideline for
the Application of ISO 9001 to the Development, Supply and Maintenance of Software.

ISO 9001, Quality Systems — Models for Quality Assurance in Design/Development,
Production, Installation, and Servicing.

ISO 9002, Quality Systems — Models for Quality Assurance in Production and Installation.
ISO 9003, Quality Systems Models for Quality Assurance in Final Inspection and Test.
ISO 9004, Quality Management and Quality Elements — Guidelines.

MIL-HDBK-286, Military Handbook, A Guide for DOD-STD-2168 Defense System Software
Quality Program, 14 December 1990.

MIL-STD 882C, Military Standard System Safety Program Requirements.

Nuclear Regulatory Commission.

NUREG-0493, A Defense-in-Depth and Diversity Assessment of the RESAR-414 Integrated
Protection System.

NUREG-4640, Handbook of Software Quality Assurance Techniques Applicable to the
Nuclear Industry, 1987.

Persons, Warren L., “Software Verification Audit Plan,” Lawrence Livermore National
Laboratory, Livermore, CA, 1993a.

Persons, Warren L., “Software Verification Audit Report,” Lawrence Livermore National
Laboratory, Livermore, CA, 1993b.

